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Abstract. A Ms 7.0 earthquake struck the Jiuzhaigou region of Sichuan Province, China at 21:19 pm on Tuesday, 8 August 11 

2017, which triggered a large number of landslides. For mitigating the damages of earthquake-triggered landslides to 12 

individuals and infrastructures of the earthquake affected region, a comprehensive landslide susceptibility mapping was 13 

attempted with an integrated weighted index model by combining the frequency ratio and the analytical hierarchy process 14 

approaches under GIS-based environment in the earthquake heavily attacked Zhangzha town of the Jiuzhaigou region. For 15 

this purpose, a total number of 842 earthquake-triggered landslides were visually interpreted and located from Sentinel-2A 16 

images acquired before and after the earthquake at first, and then the recognized landslides were randomly split into two 17 

groups to establish the earthquake-triggered landslide inventory, among which 80 % of the landslides was used for training 18 

the integrated model and the remaining 20 % for validation. Nine landslide controlling factors, namely slope, aspect, 19 

elevation, lithology, distance from faults, distance from rivers, land-use/cover, normalized difference vegetation index and 20 

peak ground acceleration, were considered with an integrated weighted index model for determination of the weighted index 21 

through analysing their relationships with occurrence frequency ratios of landslides with analytical hierarchy process 22 

approaches. Furthermore, an area under the curve approach was adopted to comprehensively evaluate the performance of the 23 

integrated weighted index model, including the degree of model fit and model predictive capability. The results 24 

demonstrated the reliability and feasibility of the integrated weighted index model in earthquake-triggered landslide 25 

susceptibility mapping at regional scale. The generated map can be served as the scientific basis to mitigate hazards of the 26 

earthquake-triggered landslides to individuals and infrastructures of the earthquake affected region. 27 
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1 Introduction 1 

Recent natural disasters and their associated death tolls and financial costs have put mitigation of natural hazards at the 2 

forefront of societal needs. Landslides are the most common natural disasters (geological hazards) that cause damages to 3 

people’s lives and property every year in many areas of the world (Saha et al., 2010; Su et al., 2015). Landslides are more 4 

likely to occur when the slope becomes unstable. Slope instability can be caused by several factors, such as geological, 5 

meteorological and anthropogenic factors, especially the earthquake and rainfall (Guzzetti et al., 2012; Sato et al., 2007). 6 

On August 8, 2017, a catastrophic earthquake of magnitude 7.0 struck the Jiuzhaigou region of Sichuan Province, China. 7 

The epicentre of this earthquake with a depth of 20 km was located latitude 33.20° N and longitude 103.82° E close to the 8 

Jiuzhaigou National Nature Reserve, about 39 km West from the city of Jiuzhaigou. According to China Earthquake 9 

Administration, this earthquake was caused by tectonic movement of an NW-SE-oriented left-lateral strike-slip fault (Wang 10 

et al., 2018a). Although the intense rainfall was not observed after the earthquake, numerous landslides were triggered yet by 11 

strong seismic vibration of ground (Zhao et al., 2018). Many tourists were trapped in the region due to numerous landslides 12 

blocking the roads. Based on field investigation, most of these landslides were small-scale rock slides, rock falls and debris 13 

slides (Fan et al., 2018; Zhao et al., 2018). As China Earthquake Administration reported, this earthquake caused 25 deaths 14 

and 176,492 injured or affected (Lei et al., 2018; Wang et al., 2018b). Comprehensive earthquake-triggered landslide 15 

susceptibility mapping in the earthquake affected area, therefore, is essential to mitigate landslide damages through the 16 

proper prevention actions for the future. Over the last decades, many approaches for landslide susceptibility mapping were 17 

proposed, among which the application of remote sensing associated with GIS modelling techniques became the most 18 

popular and effective ones (Alexander, 2008; Carrara et al., 1991; Dai and Lee, 2002; Guzzetti et al., 1999; Lee, 2005; 19 

Mantovani et al., 1996; Mansouri Daneshvar, 2014; Xu et al., 2012a). 20 

The most commonly used methods for landslide susceptibility mapping include logistic regression (Ayalew and Yamagishi, 21 

2005; Bai et al., 2010; Ozdemir and Altural, 2013), weights of evidence (Althuwaynee et al., 2012; Regmi et al., 2010), 22 

analytical hierarchy process (AHP) (Kayastha et al., 2013; Komac, 2006; Mansouri Daneshvar, 2014; Yalcin, 2008), 23 

frequency ratio (FR) (Guo et al., 2015; Li et al., 2017; Mohammady et al., 2012), support vector machine (SVM) 24 

(Marjanović et al., 2011; Su et al., 2015), decision tree (Nefeslioglu et al., 2010; Saito et al., 2009) and artificial neural 25 

network (ANN) (Conforti et al., 2014; Pradhan and Lee, 2009). These methods have been proved capable of mapping the 26 

locations that are prone to landslides, however, some shortcomings yet exist in these methods, which reduce the efficiency of 27 

these susceptibility methods when applied individually (Tien Bui et al., 2012; Umar et al., 2014). For example, the AHP can 28 

be used to identify the mutual relationship between landslide controlling factors and the landslide susceptibility, but the 29 

process and results mostly depend on the expert's knowledge, which are somehow subjective in practice (Youssef et al., 2015; 30 

Zhang et al., 2016). The FR is capable of representing the influence of the categories of each controlling factor due to 31 

landslide occurrences (Lee and Talib, 2005), however, the mutual relationship between the factors is mostly neglected, and 32 

the same issue also exists in the modelled result. Logistic regression is good at analysing the relationships among the 33 
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landslide controlling factors but is not capable to evaluate the impact of the categories of each factor individually on 1 

landslides (Umar et al., 2014). Fuzzy logic has also been employed in landslide susceptibility mapping, but the modelled 2 

results largely rely on the expert's knowledge, which often leads to a high degree of uncertainty (Tilmant et al., 2002). In 3 

addition, machine learning models (e.g. SVM, decision tree and ANN models) are very popular methods in landslide 4 

analysis, nevertheless, heavy dependence of a very high-speed computer along with large amounts of training data needed 5 

constrain their practical applications to some extent (Umar et al., 2014). 6 

In addition, the combined approach has been gradually used for landslide susceptibility assessment (Ba et al., 2017; Boon et 7 

al., 2015; Dehnavi et al., 2015; Kadavi et al., 2018; Pham et al., 2018; Shrestha et al., 2017; Umar et al., 2014; Youssef et al., 8 

2015). For instance, Umar et al. (Umar et al., 2014) used an ensemble method of FR and logistic regression to assess the 9 

landslide susceptibility in West Sumatera Province, Indonesia, and the similar integrated method was also applied by 10 

Youssef et al. (Youssef et al., 2015). Dehnavi et al. (Dehnavi et al., 2015) combined the step-wise weight assessment ratio 11 

analysis method and adaptive neuro-fuzzy inference system to produce a landslide susceptibility map of Iran. Ba et al. (Ba et 12 

al., 2017) proposed an improved information value model based on grey clustering for landslide susceptibility mapping in 13 

Chongqing. Kadavi et al. (Kadavi et al., 2018) proposed a hybrid machine learning approach of AdaBoost, LogitBoost, 14 

Multiclass Classifier, and Bagging models for spatial prediction of landslides. Although those studies suggested 15 

effectiveness of the integrated method in some areas of the world, the universality and efficiency of the integrated method 16 

were yet remained as an important issue to be confirmed in different regions of the world (Reichenbach et al., 2018). 17 

The main purpose of this study was to apply an integrated weighted index model by combining FR and AHP for 18 

susceptibility mapping of earthquake-triggered landslides. The integrated model is capable of evaluating the contribution of 19 

each landslide controlling factor to landslide occurrence using FR method, meanwhile taking mutual relationships among 20 

controlling factors into account by the use of AHP. Such integration is capable to generate a complete model that largely 21 

restrains the shortcomings of these two individual methods and reduces the uncertainty and subjectivity resulted by the 22 

utilization of individual method. The experiment site was selected at the Zhangzha town of Jiuzhaigou, a region seriously 23 

affected by the Jiuzhaigou earthquake. An earthquake-triggered landslide susceptibility map was produced by using the 24 

integrated weighted index model along with the remotely sensed information, a detailed validation analysis by using an area 25 

under the curve approach was conducted to the generated susceptibility map of the study area for evaluating the reliability 26 

and feasibility of the integrated model. This manuscript is structured as follows: Section 2 introduces the study area and the 27 

basic information about the earthquake happened on August 8, 2017. Section 3 describes the data utilized and data preparing 28 

procedures. Section 4 gives the detailed explanation about the integrated weighted index model. Section 5 presents the 29 

results and discussions focusing on validations on the generated earthquake-triggered landslide susceptibility map of the 30 

study area followed by the conclusions drawn in Section 6 at the end. 31 
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2 Study area 1 

The study area with an area of about 1345.19 km2, as shown in Fig. 1, is located in the Zhangzha town of Jiuzhaigou County 2 

between 33.03° N – 33.35° N Latitude and 103.63° E – 104.05° E Longitude in the Min Shan Mountains on the north of the 3 

Sichuan basin, eastern margin of the Tibetan Plateau. The geological conditions of this region are extremely complex. The 4 

soluble carbonate rocks are widely distributed along with tufa deposition of karst developed, and regional tectonic 5 

movements are intense here (Wang et al., 2018b). The topography of the region is characterized by alpine karst terrain where 6 

the elevation varies from 1624 m to 4855 m above mean sea level. The Jiuzhaigou County belongs to a cold sub-humid and 7 

cold semi-arid monsoon climate with the annual precipitation about 550 mm (Li et al., 2014). The geomorphology of the 8 

study area is jointly formed by the climatic, geotectonic, lithological conditions under the effect of topography of the region. 9 

Due to abundant recharge supply of groundwater in this region, many lakes and streams develop over extensive alpine karst 10 

developed region, which favours the hill slope erosion processes, and results in frequent occurrence of rock slides, debris 11 

flows, and rock falls there. 12 

The Jiuzhaigou National Nature Reserve, approved as the UNESCO World Biosphere Reserve, is just located in the study 13 

area. Many scenic spots in the Jiuzhaigou National Nature Reserve were destroyed in 2017 by the Jiuzhaigou earthquake, as 14 

presented in Fig. 2(b), the Sparkling Lake was damaged. A significant number of small-scale landslides, as shown in Fig. 1, 15 

were triggered by this earthquake along roads and river valley where many residents and infrastructures are located. 16 

Landslides seriously threaten the anthropogenic activities, as well as tourist facilities of the region, as can be seen in Fig. 17 

2(d), the S301 highway was severely obstructed by rock falls and rock slides, which drawn great attentions extensively. 18 

3 Data 19 

In order to map the landslide susceptibility of the study area, we designed and developed a spatial database with the help of 20 

ArcGIS (version 10.2) software. This database contained two primary parts: (1) the landslide inventory dataset for 21 

earthquake-triggered landslides; and (2) the datasets of background condition representing the landslide controlling factors. 22 

The data layers used in the landslide susceptibility mapping were briefly described as presented in the Table 1. 23 

3.1 Landslide inventory 24 

Landslide inventory is essential for analysing the relationships between controlling factors and the landslide occurrences, and 25 

also useful for assessing landslide hazard or risk on a regional scale (Pellicani and Spilotro, 2015). The Jiuzhaigou 26 

earthquake on August 8, 2017 with a magnitude of 7.0 triggered numerous landslides in the study area. For deriving 27 

landslide inventory containing detailed and reliable information on landslide distribution, location, etc., Sentinel-2A images 28 

acquired on July 29, August 13 and September 7, 2017 were used to recognize and locate the earthquake-triggered landslides. 29 

Sentinel-2A image has 13 spectral bands (from the blue to the shortwave infrared) with the spatial resolution of 10 m, 20 m 30 

and 60 m, respectively. In this study, three visible bands (red, green, blue) with the spatial resolution of 10 m were adopted 31 
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to establish the image feature sets of earthquake-triggered landslides based on the visual interpretation of the landslide image 1 

characteristics. With the aid of computer and GIS tools, the landslide information of the study area was extracted using on-2 

screen visual interpretation on pre- and post-earthquake Sentinel-2A images, as examples presented in Fig. 2. In order to 3 

ensure the quality of visual interpretation, GF-1 images with spatial resolution of 2 m acquired on January 15, 2017, were 4 

used to verify the results. Consequently, a total number of 842 earthquake-triggered landslides were recognized and 5 

positioned. Smaller landslides were not included as they were not clear enough in visual features. We assumed that the 6 

distribution of the earthquake-triggered landslides was reasonably accurate and complete at regional scale in order to make 7 

the problem tractable. For earthquake-triggered landslide susceptibility mapping, the landslide inventory dataset was 8 

randomly split into two groups, among which 80 % (673 landslides) of the recognized landslides was used for training the 9 

integrated weighted index model and the remaining 20 % (169 landslides) for validation. 10 

3.2 Landslide controlling factors 11 

The occurrence of landslides is a consequence of geological, meteorological, anthropogenic and triggering factors, 12 

commonly referred to as landslide controlling factors (Bai et al., 2010). Standard guidelines for choosing the optimal 13 

landslide controlling factors are unavailable, but the scale of the analysis, the nature of the study area, the data availability 14 

and the quasi-empirical and statistical criterions in literatures can be referenced (Romer and Ferentinou, 2016; Zhou et al., 15 

2016). In present study, slope, aspect, elevation, lithology, distance from faults, distance from rivers, land-use/cover (LULC), 16 

normalized difference vegetation index (NDVI) and peak ground acceleration (PGA) were selected as the landslide 17 

controlling factors, as shown in Fig. 3, for analysis. 18 

Among all landslide controlling factors, slope, aspect and elevation have been recognized as the most important topographic 19 

factors closely related to landslides (Ayalew and Yamagishi, 2005; Chalkias et al., 2016). Slope directly affects the velocity 20 

of both surface and subsurface flows (Su et al., 2015). Pioneer studies suggested that landslides become possible once the 21 

slope gradient is higher than 15° (Lee and Min, 2001). In the study area, the slopes were generally steep, with an average 22 

slope angle of about 29.92°. Aspect, referred to the direction of slope faces, is related to the soil moisture, surface runoff and 23 

vegetation growing conditions, which indirectly affects the landslide development (Zhang et al., 2016). The elevation, as the 24 

measure of the land surface height, is a key factor determining gravitational potential energy of terrain and was often 25 

considered in relevant studies (Conforti et al., 2014; Peng et al., 2014). In the study area, the rugged terrain makes the slope 26 

very unstable. Topographic factors can be calculated with DEM. The DEM from SRTM database was used to extract slope 27 

(0°–78°), aspect and elevation (1624--4855 m in the study area) in the study area. 28 

Lithology is directly related to the slope stability, which plays an important role as one of landslide controlling factors. Ten 29 

geological formation units including Quaternary (Q, Qh), Triassic (T1, T2, T3), Permian (P, P2), Carboniferous (C), and 30 

Devonian (D) outcrop in the study area (Wang et al., 2018a). For the Jiuzhaigou earthquake, most landslides in the study 31 

area occurred in the carboniferous formations which is mainly composed of metamorphic quartzite sandstones, limestone 32 

and slate (Fan et al., 2018). In addition, the Permian limestone and Triassic sandstone also exhibited a large number of 33 
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landslides. The distances of a slope from faults as well as from the river channels are also important factors in terms of slope 1 

stability. In addition, earthquake-triggered landslides usually are found in the vicinity of active faults. Hence, the distances of 2 

a slope from geological tectonic zone were often taken into account in slope stability analysis. According to the China 3 

Earthquake Administration, the epicentre of the Jiuzhaigou earthquake was located near the Minjiang, Tazang and Huya 4 

faults. Some studies had revealed that this earthquake occurred along a previously unknown blind fault probably belonging 5 

to a south branch of the Tazang fault or north part of the Huya fault (Fan et al., 2018). However, due to its great uncertainty, 6 

this blind fault was not taken into account in the study area. Streams also have an impact on the slope stability because soil 7 

water erosion is prone to take place next to the rivers on slopes. And the LULC map is one of controlling factors that pose 8 

direct impact on the occurrence of landslides. For the Jiuzhaigou earthquake, most landslides in the study area occurred in 9 

the wood land. In this study, the lithological data was obtained from the geological map at 1: 500,000 scale and was digitized 10 

in ArcGIS for further analysis. 11 

Vegetation coverage poses effect on soil water erosion, which indirectly affects the occurrence of landslides. NDVI, as the 12 

measure of vegetation coverage, was usually adopted in landslide susceptibility analysis (Siqueira et al., 2015). The NDVI 13 

was calculated from these individual measurements as follows: 14 

𝑁𝐷𝑉𝐼 =  ,           (1) 15 

Where, DNNIR stands for the spectral reflectance derived from the measured radiances in the near-infrared regions (NIR), and 16 

DNR stands for the spectral reflectance derived from the measured radiances in the visible (Red) regions. 17 

In this study, the NDVI map was generated from the Landsat-8 image acquired on April 8, 2017 over the study area.  18 

As an important dynamic factor, earthquake often triggers slope failures. Usually, the impact of earthquake on landslides was 19 

measured and quantified by recording the absolute maximum amplitude of ground acceleration (PGA) (Chalkias et al., 2016). 20 

The PGA map of the study area was downloaded from the USGS website (https://www.usgs.gov). 21 

Landslide controlling factors, i.e., (a) slope, (b) aspect, (c) elevation, (d) lithology, (e) distance from faults, (f) distance from 22 

rivers, (g) LULC, (h) NDVI, (i) PGA, as illustrated in Fig. 3, were generated as described above. To ensure the consistency 23 

and easy process of these data, all factor layers were converted into raster data format (GeoTIFF) with an identical spatial 24 

projection (WGS84 datum) and resampled to a resolution of 30 m by ENVI 5.3 and ArcGIS 10.2. 25 

4 Methodology 26 

In this study, an integrated weighted index model was developed as a complete landslide susceptibility model by combining 27 

AHP and FR approaches. The assumption behind the integrated weighted index model was that future landslides will occur 28 

under similar environmental conditions as historical landslides (Guzzetti et al., 1999; Pourghasemi and Rahmati, 2018), and 29 

the susceptibility can be evaluated from the relationship between the controlling factors and the landslide occurrence area 30 

(Zhu et al., 2014). In the present study, the integrated weighted index model was run through three general steps: (1) 31 
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determining the relative importance of landslide controlling factors using AHP method, (2) characterizing the relationships 1 

between controlling factors and landslide locations using FR and GIS techniques, and (3) predicting landslide susceptibility 2 

using weighted overlay analysis. The integrated model can assess the correlation between the controlling factors and also the 3 

influence of each landslide controlling factor on landslide occurrence.  4 

The integrated weighted index was calculated as follows: 5 

𝐼 = ∑ (𝑊 × 𝐹𝑅 ) ,           (2) 6 

Where, m stands for number of controlling factors, Wi is the weight of each controlling factor calculated by the AHP method, 7 

FRi is the FR value of the controlling factor calculated by the FR method. 8 

4.1 Analytical hierarchy process (AHP) 9 

The AHP method, developed by Saaty (Saaty, 1977), is an important multiple criteria decision-making method (Vaidya and 10 

Kumar, 2006), which has been applied for landslide susceptibility assessment for many years (Akgun, 2012; Kayastha et al., 11 

2013; Komac, 2006; Pourghasemi et al., 2012; Yalcin, 2008).  12 

For the AHP, a complex non-structural problem was broken into its component parameters which were considered as the 13 

factors of this study. Then, the contribution of factors was converted into numerical values with the help of a pair-wise 14 

comparison matrix generated through comparing the relative importance of each factor based on the expert’s prior 15 

experience and knowledge (Vargas, 1990). In addition, it also provided a methodology to judge the relative importance of 16 

factors by scoring. When a factor is more important than another, the score varies between 1 and 9. Conversely, the score 17 

varies between 1/2 and 1/9. The higher the score, the greater the importance of the factor. Finally, weights of factors were 18 

determined in the process of a pair-wise comparison matrix using Python software, and the weights with the Consistency 19 

Ratio (CR) less than 0.1 were accepted. 20 

4.2 Frequency ratio (FR) 21 

The FR method is one of the most widely used approaches to assess the landslide susceptibility at regional scale, which is 22 

based on the observed spatial relationship between landslide locations and controlling factors (Poudyal et al., 2010). The 23 

definition of FR is the ratio of the probability of the occurrence to the non-occurrence for given properties (Lee and Talib, 24 

2005). The spatial relationship between landslides and controlling factors can be investigated through the FR method. The 25 

average value of FR is 1 so that a value larger than one represents a higher correlation and those less than it, a lower 26 

correlation (Romer and Ferentinou, 2016). 27 

The FR value can be calculated as follows (Ghobadi et al., 2017): 28 

𝐹𝑅 =
( ) ( )⁄

∑ ( ) ∑ ( )⁄
 ,          (3) 29 
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Where, 𝑁𝑐𝑒𝑙𝑙(𝑆 ) represents number of grid cells recognized as landslides in class i, and 𝑁𝑐𝑒𝑙𝑙(𝑁 ) represents total number 1 

of grid cells belonging to class i in the whole area; while ∑𝑁𝑐𝑒𝑙𝑙(𝑆 ) stands for the total number of grid cells recognized as 2 

landslides in the whole area, and ∑𝑁𝑐𝑒𝑙𝑙(𝑁 ) represents total number of grid cells in the whole area. 3 

5 Results and discussions 4 

5.1 Landslide susceptibility mapping 5 

In this study, the relative importance of landslide controlling factors was determined from the prior experience and 6 

knowledge of experts. Since the knowledge source varies from person to person, the best judgment always comes from an 7 

individual who has good expertise (Ayalew et al., 2004). To find the appropriate correlation between controlling factors, we 8 

investigated some related literatures (Shahabi and Hashim, 2015; Xu et al., 2012b; Zhang et al., 2016) and consulted with 9 

some professional experts. Finally, the pair-wise comparison matrix was determined by means of discussion (Table 2) and a 10 

general consensus achieved by experts. The AHP method was used to assign the weights for each controlling factor (Table 2). 11 

In the Table 2, the weights for the nine controlling factors were estimated as follows: slope - 0.222, aspect - 0.043, elevation 12 

- 0.058, lithology - 0.116, distance from faults - 0.197, distance from rivers - 0.080, LULC - 0.083, NDVI - 0.043 and PGA - 13 

0.158. The Consistency Ratio was 0.017, which showed that the pair-wise comparison matrix satisfied the consistency 14 

requirement. The higher the weight, the more impacts on landslide occurrence could be expected. The weight of slope was 15 

highest, implying the most significant influence of slope on the landslide occurrence, and the weights of aspect and NDVI 16 

were the lowest, which indicated that these two factors played the least role in the landslide occurrence. 17 

Thus, the FR was considered as a measure for the spatial relationship between landslides and controlling factors. Through 18 

analysing the relationship between each controlling factor and the landslide occurrence, the FR values were calculated by 19 

using the Eq. (3) (as shown in Table 3). The higher the FR was, the closer the relationship between the landslide controlling 20 

factor and the landslide occurrence would be. In the term of the relationship between landslide occurrence and slope, 21 

landslides mostly occurred in the slope ranging from 40° to 60°. For the elevation, landslides mostly occurred below the 22 

elevation of 3400 m, which implied that the probability of landslide occurrence was higher in moderate steep mountainous 23 

region. In terms of the aspect, the FR value was very high for the class of E, N, SE and NE, and it was lowest for the class of 24 

Flat. For the lithology, the highest FR value was achieved for Permian System which influenced the landslide occurrence. 25 

For the factor of distance from faults, the highest FR value belonged to the area higher than 2000 m. The distance from rivers 26 

with the highest FR value for frequent landslide occurrence was found usually between 0 and 600 m, and landslides mostly 27 

occurred in the region with low vegetation cover of less NDVI value. In the case of PGA, the value of 0.26 g had the highest 28 

FR value, which indicated the significant influence of the earthquake on the landslide occurrence. In general, our results 29 

were basically consistent with the previous study (Fan et al., 2018), which found that most of the landslides mainly occurred 30 

in proximity of rivers and the epicentre, with an elevation of 2600 m to 3200 m and a slope of 35° to 55°. 31 
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Finally, the weighted index was calculated by using the Eq. (2). The landslide susceptibility map of study area was generated 1 

by using Weighted Overlay Analysis tool of ArcGIS, and the study area was classified into seven categories of landslide 2 

susceptibility levels as presented in Fig. 4: very high, high, relatively high, moderate, relatively low, low and very low by 3 

using Natural Breaks (Jenks) method with ArcGIS, respectively. 4 

According to the landslide susceptibility map, the location close to the epicentre and rivers was classified as the most 5 

susceptible areas for landslides, and the high and very high landslide susceptible areas mostly located in the middle central 6 

mountainous region accounting for 10.99 % of the study area. The low and very low susceptibility areas far from the 7 

epicentre and less affected by the earthquake, mainly distributed in the North and South-West parts of the study area, 8 

accounting for approximately 35.06 % of the study area. Generally, the landslide susceptibility map generated by the 9 

integrated weighted index model can reflect the potential area of the landslide occurrence in the study area. 10 

5.2 Validations 11 

For landslide susceptibility mapping, detailed validation of the modelled results is essential. A simple procedure of 12 

validation can make a comprehensive and reasonable interpretation of the future landslide hazard (Chung and Fabbri, 2003). 13 

In this study, operating characteristics curve (ROC) approach (Brenning, 2005; Bui et al., 2016) was adopted to evaluate the 14 

performance of the integrated weighted index model, including the degree of model fit and model predictive capability. The 15 

ROC curve was obtained by calculating the area under the curve (AUC) and the AUC value varied from 0.5 to 1.0 (Umar et 16 

al., 2014). The AUC value of 1.0 implied a perfect performance of the model, whereas a value close to 0.5 indicated that the 17 

model performed not so well. To assess the fitting performance of the integrated weighted index model, five sub-datasets 18 

containing 20 %, 40 %, 60 %, 80 % and 100 % of training dataset (i.e., 673 landslides) respectively, were used to obtain the 19 

fitting curves (Fig. 5(a)). Figure 5(a) shows a quantitative measure of the ability of integrated weighted index model to 20 

describe the known distribution of landslides. The AUC values of five sub-datasets were 82.57 %, 84.52 %, 84.99 %, 86.08 % 21 

and 85.65 %, respectively, which suggested the effective fitting capability of the integrated weighted index model developed 22 

in this study. 23 

To investigate the prediction performance of the integrated weighted index model, we also adopted five sub-datasets 24 

containing 20 %, 40 %, 60 %, 80 % and 100 % of validation dataset (i.e., 169 landslides) respectively, to estimate the 25 

prediction rates. Note that the validation dataset (i.e., 20 % of the landslide inventory dataset) was not used in the training 26 

process. The AUC values of five sub-datasets, as presented in Fig. 5(b), were 78.71 %, 81.66 %, 84.27 %, 86.09 % and 27 

87.16 %, respectively. With the increase of input data, the performance of the integrated weighted index model was 28 

significantly improved, which indicated a reliable predicting capability of the integrated weighted index model adopted in 29 

this study. 30 

In addition, the landslide density distribution of each susceptibility level was computed by associating landslides with the 31 

classified landslide susceptibility map (as shown in Table 4). There was a clear trend that the increase in the level of 32 

landslide susceptibility was highly correlated with the density of landslides. The high and very high susceptibility levels had 33 
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the significant high landslide density values, while the low susceptibility categories were just the opposite, which also 1 

implied the effectiveness of the generated landslide susceptibility map of study area. 2 

5.3 Discussions 3 

Landslide susceptibility is defined as the likelihood of landslides occurring in an area under local environmental conditions 4 

(Fell et al., 2008; Reichenbach et al., 2018). The susceptibility can be evaluated from the relationship between the 5 

environmental conditions and previous landslides (Zhu et al., 2014). There are numerous methods that have been proposed to 6 

model this relationship. The main purpose of this study was to assess the spatial probability of landslide occurrences by 7 

using an integrated weighted index model in association with the utilization of FR and AHP approaches to generate an 8 

earthquake-triggered landslide susceptibility map. To achieve this objective, nine controlling factors (slope, aspect, elevation, 9 

lithology, distance from faults, and distance from rivers, LULC, NDVI and PGA) were taken into consideration. 10 

The FR is a data-driven statistical approach which can derive spatial relationship between landslide locations and controlling 11 

factors. However, the FR method does not consider the mutual relationships between controlling factors. The AHP method is 12 

an important multiple criteria decision-making method, which can overcome this shortcoming. To some extent, the 13 

integrated method preserves the advantages of FR and AHP methods and restrains their weak points. Some similar studies 14 

have also pointed it out (Reichenbach et al., 2018; Youssef et al., 2015; Zhou et al., 2016).  15 

The implementation of the integrated weighted index model revealed that landslide susceptibility levels were basically 16 

consistent with the distribution of earthquake-triggered landslides. The high susceptibility areas were concentrated in the 17 

central mountainous region close to the epicentre of the earthquake of the study area, which indicated the significant 18 

influence of the Jiuzhaigou earthquake on the landslide occurrence. From the landslide susceptibility map, the “very high” 19 

and "high" susceptibility areas covered a significant part of the study area (10.99 % of the whole area) and most of the 20 

Jiuzhaigou National Nature Reserve was classified as the most landslide susceptible areas. 21 

Even though, some limitations yet existed in the proposed method. Firstly, the accuracy of FR method is highly depended on 22 

the quality of dataset, especially the landslide inventory. Nevertheless, the landslide inventory is generally incomplete (Fell 23 

et al., 2008), and is affected by many factors, such as the quality and scale of remote sensing images, the tectonic setting 24 

complexity of study area, and the expertise of the interpreter involved (Malamud et al., 2004). In this study, we mainly 25 

focused on the interpretation of earthquake-triggered landslides. We didn’t accurately identify the landslides before the 26 

Jiuzhaigou earthquake due to the limitations of historical images, and smaller landslides were also not completely identified. 27 

Future work should focus on the preparation of more detailed landslide inventories. Secondly, in this study, as the proposed 28 

method was applied to medium-scale datasets, the results may not be suitable for specific analysis of large or detailed scale. 29 

At large or detailed scales, more detailed landslide inventory dataset and controlling factor layers were required. 30 

Additionally, the assumption behind much of the landslide susceptibility mapping is that future landslides will occur under 31 

similar environmental conditions as historical landslides (Guzzetti et al., 1999; Pourghasemi and Rahmati, 2018). However, 32 

results obtained in the past environmental conditions are not a guarantee for the future (Guzzetti et al., 2005). The 33 
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susceptibility results need to be adapted as soon as environmental conditions or their causal relationships obviously change 1 

in the future, such as urban sprawl (van Westen et al., 2008). Despite its limitations, the integrated method can generate a 2 

reliable landslide susceptibility map at regional scale which can provide the scientific basis for reconstruction of tourism 3 

facilities, regional disaster management etc. 4 

6 Conclusions 5 

Earthquake is one of the dynamic causes in landslide occurrence. Earthquake-triggered landslides can cause extensive and 6 

significant damages to both lives and properties. In this study, given the main motivation to adopt an integrated weighted 7 

index model based on FR and AHP methods for earthquake-triggered landslide susceptibility mapping at the Zhangzha town 8 

of the Jiuzhaigou County where a Ms 7.0 earthquake struck on Tuesday, 8 August 2017, nine factors such as slope, aspect, 9 

elevation, lithology, distance from faults, distance from rivers, LULC, NDVI and PGA as landslide controlling factors were 10 

adopted in the integrated weighted index model for generating the landslide susceptibility map of the study area with 11 

reclassification of seven levels of landslide susceptibility areas within a GIS environment. The ROC approach was used to 12 

comprehensively evaluate the performance of the integrated weighted index model, including the degree of model fit and 13 

model predictive capability. The results demonstrated the reliability and feasibility of the integrated weighted index model in 14 

landslide susceptibility mapping at regional scale. 15 

Even some limitations do exist, the integrated weighted index model can generate a reliable landslide susceptibility map at 16 

regional scale that is useful for serving the scientific basis for disaster mitigation and management. Furthermore, the 17 

integration of some machine learning techniques should be taken into account in the integrated weighted index model for 18 

advancement in future studies. 19 
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Figures 1 

 2 

Figure 1: The digital map showing the location, topography, river networks, epicentre of the Jiuzhaigou earthquake, as well as the 3 
locations of earthquake-triggered landslides for training and validation over the study area. 4 
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 1 

Figure 2: Remote sensing interpretation for earthquake disaster of the study area. a) 2 m spatial resolution GF-1 remotely sensed 2 
image acquired on January 15, 2017 before the earthquake compared with b) 1 m spatial resolution GF-2 remotely sensed image 3 
acquired on August 9, 2017 after the earthquake, clearly revealed the dried up of the Sparkling Lake after the Jiuzhaigou 4 
earthquake; c) 2 m spatial resolution GF-1 remotely sensed image acquired on January 15, 2017 before the earthquake compared 5 
with d) 1 m spatial resolution GF-2 remotely sensed image acquired on August 9, 2017 after the earthquake, illustrated the 6 
damage of the S301 highway in the Jiuzhaigou earthquake. 7 
 8 
 9 
 10 
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   3 

Figure 3: Landslide controlling factor layers used for landslide susceptibility mapping in the study area. (a) Slope, (b) Aspect, (c) 4 
Elevation, were all extracted from DEM data, (d) Lithology, digitized from the geological map at 1: 500,000 scale, (e) Distance 5 
from faults, calculated by ArcGIS 10.2 software, (f) Distance from rivers, calculated by ArcGIS 10.2 software, (g) LULC, collected 6 
from the Geographical Information Monitoring Cloud Platform, (h) NDVI, extracted from the Landsat-8 image, (i) PGA, 7 
downloaded from the USGS website. 8 
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 1 

Figure 4: Landslide susceptibility map of the study area generated by using the integrated weighted index model. 2 
 3 
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  1 

Figure 5: ROC curves of the Jiuzhaigou landslide susceptibility assessment. (a) Fitting performance of the integrated weighted 2 
index model; (b) Prediction performance of the integrated weighted index model. 3 
 4 
  5 
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Tables 1 

Table 1: Data layers of the study area. 2 

Data layer Data format Scale/resolution Data source 

DEM Grid 30 m Shuttle Radar Topography Mission (SRTM) 

Sentinel-2A IMAGINE image 10 m European Space Agency 

Landsat-8 IMAGINE image 30 m United States Geological Survey (USGS) 

GF-1/2 IMAGINE image 2 m/1 m China Centre for Resources Satellite Data and Application 

Lithology Shapefile (polygon) 1:500,000 The geological map 

Fault Shapefile (line) 1: 500,000 China Earthquake Administration 

River Shapefile (line) 1:10,000 Remote sensing interpretation 

LULC Grid 30 m Geographical Information Monitoring Cloud Platform 

PGA Shapefile (polygon) 1:25,000 United States Geological Survey (USGS) 

 3 
 4 
 5 
Table 2: The pair-wise comparison matrix, factor weights, and consistency ratio obtained in present study. 6 

Factor a1 a2 a3 a4 a5 a6 a7 a8 a9 Weight 

Elevation (a1) 1 1/4 2 1/3 1/4 1 1/3 1/2 2 0.058 

Slope (a2)  1 4 2 1 3 2 3 4 0.222 

Aspect (a3)   1 1/3 1/4 1/2 1/3 1/2 1 0.043 

Lithology (a4)    1 1/2 1 1/2 2 3 0.116 

Distance from faults (a5)     1 2 1 3 4 0.197 

LULC (a6)      1 1/2 1 2 0.083 

PGA (a7)       1 2 3 0.158 

Distance from rivers (a8)        1 2 0.080 

NDVI (a9)         1 0.043 

Consistency Ratio: 0.017 

 7 
  8 
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Table 3: The FR and weights for landslide controlling factors for the study area. 1 

Factor Class FR Weight Factor Class FR Weight 
Slope (°) <10 0.000 0.222 Elevation(m) <2265 0.451 0.058 

10-20 0.106 2265-2601 1.153 
20-30 0.431 2601-2891 2.411 
30-40 1.270 2891-3159 2.437 
40-50 2.330 3159-3411 1.496 
50-60 2.807 3411-3652 0.819 
60-70 1.804 3652-3894 0.177 
>70 0.000 3894-4147 0.021 

Aspect Flat 0.000 0.043 >4147 0.000 
N 1.305 Lithology T3 0.030 0.116 
NE 1.116 T2 0.528 
E 1.662 P 3.431 
SE 1.343 C 1.819 
SE 0.965 D 0.544 
SW 0.590 P2 0.000 
W 0.646 T 0.039 
NW 0.560 T1 0.000 
N 0.819 Qh 0.471 

Distance from 
faults (m) 

<500 0.689 0.197 Q 0.000 
500-1000 0.482 Distance from 

rivers (m) 
<300 1.302 0.080 

1000-1500 0.594 300-600 1.162 
1500-2000 0.606 600-1200 0.795 
>2000 1.169 >1200 0.863 

NDVI <0 1.211 0.043 LULC Dry land 0.796 0.083 
0-0.1 1.199 Wood land 2.085 
0.1-0.2 0.975 Shrub forest 0.164 
>0.2 0.306 Sparse woodland 0.000 

PGA (g) 0.08 0.000 0.158 Water area 0.970 
0.12 0.009 High-covered grassland 1.072 
0.16 0.273 Medium-covered grassland 0.550 
0.20 1.448 Low-covered grassland 0.000 
0.24 2.194 Settlement 0.000 
0.26 3.578 Construction  0.000 

 2 
  3 
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Table 4: Landslide susceptibility levels and density of landslides in the study area. 1 

Susceptibility level Area (km2) 
Percentage 
of area 

Number of landslide 
occurrences 

Percentage 
of number 

Density (no./km2) 

Very Low  130.81 9.72 % 4 0.47 % 0.03 

Low  340.86 25.34 % 22 2.61 % 0.06 

Relatively low 308.29 22.92 % 35 4.16 % 0.11 
Moderate 238.84 17.76 % 89 10.57 % 0.37 

Relatively high 178.52 13.27 % 172 20.43 % 0.96 

High  107.20 7.97 % 325 38.60 % 3.03 

Very High  40.67 3.02 % 195 23.16 % 4.79 

Total 1345.19 100 % 842 100 % -- 

 2 
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